

Orion. A (Near) Zero Carbon All-Electric Building in Pemberton BC.

Carbon Performance in BC Local Government New Building Requirements

Brendan McEwen, AES Engineering Ltd.

March, 2022

- Overview of BC Local Government Carbon Performance Requirements
- Summarize Proposed Provincial "Opt-in" Carbon Performance Requirement
- Potential Paths for BC Local Governments

Electric building systems are very low carbon on BC's clean electrical grid

Part 9 Buildings – New Construction

Source: BC Energy Step Code Metrics Research. Updated 2020 by Remi Charron.

BUILDING ACT GUIDE SERIES: SECTION A2

A Guide to the Building Act: Modernizing B.C.'s Building Regulatory System

JUNE 2015

To Date, BC Local Governments Could Not Directly Require GHG performance

Local governments are limited by the BC Building Act from making technical building requirements

... but they can provide options...

Local Government	Requirements LCES Option			Effective Date
Part 9 Buildings (Smaller buildings, less than 4 storeys & 600m² in footprint) Step 5 is highest Step; Step 3 is anticipated apprx. performance of 2022 baseline BC Building Code				
D. of West Vancouver	Step 5	OR	Step 3	Mar 2021
City of Vancouver	~Step 5	OR	~Step 4	Jan 2022
City of North Vancouver	Step 5	OR	Step 3	Jul 2021
District of North Vancouver	Step 5	OR	Step 3	Jul 2021
City of Richmond	Step 3	OR	Step 2	In Effect
City of Richmond (proposed)	Step 4	OR	Step 3	Jan 2022
City of Victoria (proposed)	Step 4	OR	Step 3	Jan 2022

Part 3 Buildings – Residential (Larger buildings, 4+ storeys or 600m² footprint) Step 4 is highest Step; Step 2 is anticipated apprx. performance of 2022 baseline BC Building Code

D. of West Vancouver	Step 4	OR	Step 2	Mar 2021
City of Vancouver – 7 + stories	~Step 3	OR	~Step 2	In effect
City of Vancouver – < 7 stories	~Step 4	OR	~Step 3	In effect
City of Richmond – 7 + stories	Step 3	OR	Step 2	In effect
City of Surrey	Step 3	OR	Step 2	In effect
City of Port Moody	Step 3	OR	Step 2	In effect
	Step 4	OR	Step 3	2021
City of Burnaby	Step 3	OR	Step 2	In effect
City of New West	Step 3	OR	Step 2	forthcoming
D. of North Vancouver	Step 4	OR	Step 3	2021
City of Victoria (proposed)	Step 3	OR	Step 2	Jan 2022
Part 3 Buildings - Office & Petail				

Office & Retail art 5 buildings -

Step 3 is highest Step; Step 2 is anticipated apprx. performance of 2022 baseline BC Building Code

City of Burnaby	Step 3	OR	Step 2	In effect
D. of North Vancouver	Step 3	OR	Step 2	Jul 2021

CleanBC Roadmap to 2030 – Buildings Commitments

- Carbon performance in the BC Building Code
 - Local government "opt-in" requirements in 2022
 - Phase in provincial requirements over time (2024, 2027, 2030)
 - Transition to zero-carbon new buildings Province-wide by 2030.
- Highest efficiency standards for new space and water heating equipment
 - After 2030, all new space and water heating equipment sold and installed in B.C. will be at least 100% efficient [e.g. Heat pumps or electric resistance. Gas combustion not allowed.]

Roadmap to 2030

Opt-in Carbon Performance Reg

Source: BC Building & Safety Standards Branch

Metrics

- Anticipated that Province will introduce an "opt-in" carbon performance regulation using a "greenhouse gas intensity" (GHGI) metric
 - GHGI is a modeled value
 - Measured in kgCO₂e/m²/year
- Potential levels:
 - Measure GHG emissions only
 - Medium carbon (GHGI set to decarbonize domestic hot water *or* heat)
 - Low carbon: (Decarbonize domestic hot water *and* heat)
 - Zero-carbon: *all* systems use low-carbon fuels

Hot Water Heat Pumps with Ultra-Low GWP Refrigerants A Low Carbon Building Technology

Province's Proposed Part 3 targets

	GHGI Targets (kgCO ₂ e/m ² /year)			
Occupancy	Medium	Low	Zero Carbon Ready	
MURB	7 (or 6-8?)	3 (or 4?)	2 (or 1.5?)	
Office	5	3	1.5	
Retail	6	3	2 (or 1.5?)	
Hotel	9	4	2 (or 1.5?)	

Province's Proposed Part 9 performance targets

	Targets	Ideal for small houses
		GHG Base Allowance
Path 1: GHG		kg CO2e per unit
"base allowance"	Medium	1200
	Low	500
	Zero Carbon Ready	300

		Building	GHG
		GHG	Maximum
Dath 2. CUCL 2		Intensity	Сар
		kgCO2e/m2/yr	kg CO2e per unit
GHG Cap –	Medium	6	2400
Both apply	Low	2.5	1000
	Zero Carbon Ready	1.5	500
	Ideal for me	dium-	Limits emiss
	sized hou	ses	the largest l

• Hybrid GHG/GHGI approach

- Each dwelling unit gets a minimum carbon allowance
- If the dwelling unit exceeds the allowance, it must meet either a GHG or GHGI, whichever emits *the least total GHG*
- All paths available regardless of home size or AHJ
- Why?
- Gives small homes a chance; doesn't let large homes off the hook
 - Small homes greatly exceeded 6/3/1 GHGI targets yet have lower total GHG emissions than larger homes
 - Large homes still need to be thoughtfully decarbonized

Proposed Part 9 prescriptive path

Targets

		Action
Path 3: Prescriptive	Medium	Decarbonize space heat
	Low	Decarbonize both heat & hot water
	Zero Carbon Ready	Fully decarbonized building

- Why?
- Simpler
- Compatible with any future prescriptive Part 9 path in BCBC
- Compatible with communities that have not adopted Step Code (which is performance based)
- It works for the Fort Nelson electricity grid

Potential Provincial Timeline for BC-Wide Requirements

Potential Local Government Pathways

- 2023 / '24
 - Require "Low Carbon" (or Zero-Carbon Performance)
 - If needed, implement an interim "Low Carbon Energy System Option", if Province is slow to implement opt-in carbon performance requirement:
 - e.g. Step 5, OR Step 3 (or BCBC) & Low Carbon Energy System
 - <u>Either way, decarbonization will predominantly require electric</u> mechanical systems (e.g. heat pumps)
- Future years (e.g. 2026)
 - Increase Step Code (energy efficiency)
 - Zero Carbon Performance (if started at low carbon)

Thank you!

NAMES AND ADDRESS ADDRESS

NAMES AND POST OFFICE ADDRESS OF NAMES AND ADDRESS ADDR And In Column & Street or other Design and Address of the Owner, where the Party of the Party of

COMPANY AND ADDRESS AND ADDRES

CONTRACTOR OF STREET, STREET,

Concession of the

Concessor 2

provide a

And the Party Party lines of the

Annual Distance Street Street Links

and the state of the state of the state

Street Street Street Street

Street, Square, Square, such

of the local division of the local divisiono

Contraction of Second 6 million (C)

Column terms

Stational Color

COLUMN COLUMN

COLUMN 2 ST COLUMN COLUMN COLUMN STATE

Street, successive diversity of Contraction of the No. of Concession, Name

Street, Square, Square

and Personal Division in the of Street, Concession, Co.

our success to success the

of success division in the And Personal Property lies, Name

And Personnelly Street, Spin-STATISTICS. CONTRACTOR NO. And in case of the local division of the loc and concerning Conce State of Concession, Name And Personnel American Street of the second second

Station of the local division of the local d

ALC: NO.

Brendan.mcewen@aesengr.com

- 10

Additional Slides

Considerations for Renewable Natural Gas

Challenges with relying on RNG in new construction to achieve climate objectives

What is RNG?

- Bio-methane
 - Manure
 - Energy crops
 - Farm/forestry residues
 - Etc.
- Landfill gas
- Synthetic methane (i.e. Power to methane)
- Blending zero carbon hydrogen into gas pipelines (up to a certain percentage)

CoV Energy Modeling Guidelines

- "Where renewable energy is purchased directly from utilities or renewable energy providers, and guarantees of long-term supply are provided to the satisfaction of the AHJ... an emissions factor of zero may be used."
 - However, appropriate mechanisms to guarantee of long-term supply have not yet been used
 - Challenges with enforcing such mechanisms

FIGURE 5: AMERICAN GAS FOUNDATION AND NRDC HIGH AND LOW ESTIMATES OF BIOGAS AND SYNTHETIC GAS POTENTIAL*

AGF-HIGH Renewable Synthetic Methane 12% OF U.S. GAS DEMAND Energy Crops 4,000 Forestry and Forest Residue Ag Residue Organic Components of Municipal Solid Waste 3.500 Wastewater Treatment Animal Manure Landfill Gas 3.000 2,500 NRDC-HIGH 7% OF U.S. GAS DEMAND TBtus/year AGF-LOW 2,000 5% OF U.S. GAS DEMAND NRDC-LOW 3% OF U.S. GAS DEMAND 1.000 500 AGF U.S. - LOW AGF U.S. - HIGH NRDC - LOW NRDC - HIGH AGF NRDC

(TBtus per year by 2040, and as percentage of 2019 U.S. gas demand)

Technically feasible supplies of RNG in North America are estimated to be limited

* NRDC estimates are based on the AGF results, adjusted for our biogas resource policy recommendations given in Figure 2. We use the AGF high and low estimates for synthetic methane produced with renewable electricity.

Source: NRDC: https://www.nrdc.org/resources/pipe-dream-or-climate-solution

BC Technically Feasible Supplies Bio-Methane

• Hallbar Consulting (2017) estimated potential RNG feedstocks in BC viable in long-term at up to \$28/GJ* (with technology advancement)

* For comparison, FortisBC cost of gas in Lower Mainland currently \$2.84/GJ

Data from: Hallbar Consulting, *Resource Supply Potential for Renewable Natural Gas in B.C.* Prepared for Province of British Columbia, FortisBC Inc., and Pacific Northern Gas Ltd. 2017.

Climate Impacts of Residue Wood Feedstocks for RNG

Climate impacts depends on:

- what would otherwise happen to residues, e.g.
 - Fully burned
 - Left on site
 - Stored carbon (e.g. engineered wood; etc.)
- Regrowth time (rotation)

Piled and Burned (BC) -Piled and Burned (AB) -Piled and Burned (ON) -Left on site (BC) -Left on site (AB) -Left on site (ON) -10 20 30 60 80 90 70 100 40 Time (years)

Worse for climate ("carbon debt")

- Uncertain May be better or worse for climate
- Better for climate (not necessarily zero emissions)

Source: Rut Serra; Iman Niknia; David Pare; Brian Titus; Bruno Gagnon; Jerome Laganiere (all of Canadian Forest Service), "From conventional to renewable natural gas: can we expect GHG savings in the near term?," *Biomass and Bioenergy*, vol. 131, 2019.

Harvest Residues

RNG cost & availability – California example

Source: E3. 2019. For California Energy Commission. https://ww2.energy.ca.gov/2019publications/CEC-500-2019-055/index.html

Carbon Intensity of Electricity

Which is Better for the Climate - Electric vs. Gas Heating? Depends on electric grid GHG intensity

Note: "Mild" climate modeled as single-family home in Oakland, CA; "Cold" climate modeled as multifamily residential building in Boston, MA. Sources: emissionsindex.org, RMI analysis

GHG Intensity of BC Grid at Each Hour of the Year 2019 data

GHG Intensity of BC Grid at Each Hour of the Year

Some Implications of "Low Carbon Energy System" Definition

	All-electric	GHGI
Precedents	 ~50 California cities Seattle (commercial & large multifamily) City of Vancouver Part 9 Prescriptive requirements (SH & DHW) 	 Most BC local governments LCES Options in Energy Step Code requirements.
Impact on gas equipment	 Precludes installation of gas equipment Exceptions can be made for certain end uses (e.g. commercial kitchens) 	 As GHGI lowers, energy end uses (e.g. SH, DHW, cooking, etc.) increasingly electrify Gas equipment can be used as backup
Reversion to polluting gas equipment, e.g. 1) future conversion 2) excessive reliance on "back up" systems	Best avoids these outcomes	 Risk of conversion Risk of reliance on "back up" gas equipment (however, City of Vancouver requires if you install gas, treated as main source)
Applicability of RNG NOTE: Supplies of sustainable, legitimately low carbon sources of RNG are limited.	Can not use RNG to comply	 Theoretically possible - Modeling Guidelines stipulate: "Where renewable energy is purchased directly from utilities or renewable energy providers, and guarantees of long-term supply are provided to the satisfaction of the AHJ an emissions factor of zero may be used".

About Greenhouse Gas Intensity (GHGI)

- Measured in units of kg $CO_2e/m^2/yr$.
- Derived from the energy models used to document compliance with the Energy Step Code (as described in City of Vancouver *Energy Modeling Guidelines* reference by Energy Step Code).
- Reported as an output on Step Code compliance tools:
 - Part 3 Energy Design Report
 - BC Energy Compliance Report Performance Path for Part 9 Buildings
- Province is currently studying potential threshold levels (i.e. "steps") for GHGI requirements

GHGI Level	Implications for Residential Developments – Climate Zones 4
Measure	All systems may be gas
6 kg CO ₂ e/m²/yr	Space heating tends to be predominantly electric; DHW may remain gas.
$2 \log CO = (m^2) \log m$	Space heating & DHW tend to be electric (back-up gas systems for peak capacity possible); gas
3 kg CO ₂ e/m²/yr	fireplaces and cookstoves possible.
1.5 kg CO ₂ e/m²/yr	(Nearly) all building systems electric.

Note: Multiple means of meeting a particular GHGI performance level exist, and these implications are intended only as a general guide for policy-makers to understand likely implications of GHGI metrics.