

Energy Step Code

Architectural Case Studies for Step 3

Jason Heinrich, Architect AIBC, P.Eng. Building Performance Lead, Vancouver 03/02/2022

- **01** Key Architectural Considerations
- **02** Case Study #1: Rental Housing, Okanagan, BC
- **03** Case Study #2: BC Housing Mixed Use, Vancouver, BC
- 04 Conclusions

Simple forms and envelopes

• Vertical Façade to floor Area Ratio (VFAR)

Window to wall ratio

Glazing performance

Effective RValues consider Thermal Bridging

Effective RValues consider Thermal Bridging

Air tightness

Buildings with a continuous air barrier around the entire facade will improve airtightness and minimize heat losses

Separating building uses (e.g. parking, retail, residential) from one another further improves airtightness and reduces the stack effect

Compartmentalizing individual units

provides the highest level of airtightness and improve occupant comfort by reducing the transfer of noise and smells between units

01 Rental Housing

Client owned rental housing // Central Okanagan, BC

Passive House inspired design

- Target less than Step Code
 - TEUI: 108 kWh/m2 (120 target)
 - TEDI: 31.5 kWh/m2 (35 target)
- Low VFAR
- 44% WWR
 - Double pane low-e glazing
- Sandwich panel façade
 - GC preference
 - Prefabrication = QC for air tightness
 - Focus on joints
- Individual suite ASHPs

Thermally Broken Balconies

Collaboration with GC to adapt preferred precast balcony

02 BC Housing Mixed Use

Clinic (podium) and rental housing // Vancouver, BC

Project Background

- BC Housing elected for Step 3
- Clinic at podium and rental housing above
- Concrete and wood frame construction
- Separate air compartments
- Low VFAR
- 21% WWR
- Individual suite HRVs and ASHPs

Requirements	CoV Rezoning	BC Housing Step Code
TEDI (kWh/m²)	29.8	30.0
TEUI (kWh/m²)	121.2	120
GHGI (kg CO ₂ e/m ²)	6.0	6.0
Overheating Hours	200	20

Wood frame housing

EXTERIOR	

EXTERIOR VINYL GLAZING SYSTEM - TRIPLE-GLAZED VISION PANEL IN PREFINISHED VINYL WINDOW SYSTEM.

EXTERIOR
X
· · · · ·

METAL CLADDING @ WOOD STUD

- EXTERIOR PREFINISHED NON-COMPOSITE METAL CLADDING.
 - GALV. METAL SUB-GIRTS (AIR GAP.)
 - 150mm THERMALLY-BROKEN CLIP SYSTEM.
 - SEMI-RIGID MINERAL WOOL INSULATION (150mm MIN.)
 - FULLY ADHERED AIR/ VAPOUR/ MOISTURE BARRIER MEMBRANE.
 - 15.5mm PLYWOOD SHEATHING.
 - 38x140mm WOOD STUDS @ 600mm O.C.
 - 15.9mm 'TYPE-X' GYPSUM BOARD.

Thermal bridges - Balconies

 16
 WOOD FLOOR @ EXTERIOR WALL / BALCONY

 A6.03
 SCALE = 1 : 10
 FIRST REFERENCED FROM: A5.12

Concrete tower

Requirements	CoV Rezoning	BC Housing Step Code
TEDI (kWh/m²)	29.8	30.0
TEUI (kWh/m²)	121.2	120
GHGI (kg CO2e/m²)	6.0	6.0
Overheating Hours	200	20

EXTERIOR VINYL GLAZING SYSTEM

- TRIPLE-GLAZED VISION PANEL IN PREFINISHED VINYL WINDOW SYSTEM.

METAL CLADDING @ STUD - HORIZONTAL

EXTERIOR PREFINISHED NON-COMPOSITE METAL CLADDING.
 GALV. METAL SUB-GIRTS (AIR GAP.)
 150mm THERMALLY-BROKEN CLIP SYSTEM.
 SEMI-RIGID MINERAL WOOL INSULATION (150mm MIN.)
 FULLY ADHERED AIR/ VAPOUR/ MOISTURE BARRIER MEMBRANE.
 12.7mm FIBRE REINFORCED EXTERIOR SHEATHING.
 152mm METAL STUDS @ 600mm O.C.
 15.9mm 'TYPE-X' GYPSUM BOARD.

Conclusions

Energy model early and often

Construction feedback during design process = improved cost certainty and design decisions

```
Low form factor = efficient floor plate
```

Low form factor = reduced envelope

Low WWR = less expensive glazing and less of it

```
Improved glazing = better acoustics
```

Improved air tightness and suite HRV = better acoustics, odors

Improved performance = less cost to owners

FSS